Members of European Council
Representatives of EU countries

Subject: Information about calculus of CO₂ emissions and clear failure to meet the target for reducing CO₂ emissions; request for elaboration of a balanced regulation

Dear Ladies and Gentlemen,

the signees of this letter thank you for your ambitious efforts to reduce the CO₂ emissions in the near and distant future. The intergovernmental panel of climate change (IPCC) has emphasized in its 2018 report, that the complete mankind is allowed to emit only 420 GtCO₂ in order to limit the global warming by 1.5°C. A quick, effective reduction of CO₂ emissions is therefore important.

Signees and supporters of this letter already have informed important representatives of different institutions in Europe in the last months and years and emphasized major concerns about the suggested legislation to reduce CO₂ emissions, especially in the sector of mobility.

The supporters of this letter typically had or have been working as lectures and instructors at universities all over the world as experts in the field of energy conversion, thermodynamics, energy transfer or energy balancing. Most of these supporters are experts in the course of studies of mechanical engineering, process engineering or chemistry engineering, which are the studies with the deepest and most intensive focus on major kinds of energy balancing.

The signees in combination with hundreds of supporters of this letter again want to repeat their criticism, that a serious miscalculation (averaging bias) in the analyses of CO₂ emissions caused by all electrical consumers is obviously influencing political initiatives. Above all, the misdrection leads to significantly increased CO₂ emissions. For basic explanation, please take our example (see Table 1, page 2). We therefore repeat our clear criticism that the elaboration which has been taken as a basis for the preparation of a CO₂-roadmap is without physical basis and thus wrong! The real CO₂ emissions of all electric consumers (including BEV) are significantly higher than those of the inadequate average-value based approach, leading to the significant averaging bias.

Even future technology potentials like the increasing possibility of electrical energy storage in surplus times do not change the fundamental fact that the approach of calculation is unsuitable (Table 2 on page 3). Electrical storage capacities improve the situation but don’t solve the problem. Nor does a modification of the composition of energy carriers (coal subsidized by gas) for power plants change the fundamental error.

1 For questions regarding status of IASTEC please contact: landry.cochard@scinnov.eu
2 i.e. Open letter to the European Parliament and the European Council on the risk of failure to meet long-term climate protection goals in the transport sector due to insufficient legal regulations, April 19th 2022 as well as June 17th, 2021 by T. Willner, A. Günther and supporters
Please see criticized Figure ES5 of the mentioned publication (page 9):at the end of this letter
4 BEV: battery electrical vehicles
Daughter Eve has a total financial need of 6000€/a to finance her studies. Eve supports through own jobs: 40% (2400 €/a) or in another case even 80% (4800 €/a) can be contributed. The parents support Eve and have to pay for the remaining costs: 60% (3600 €/a) or even only 20% (1200 €/a) in the second case. The total financial need is now increased by 100 € due to additional costs (software, cloud, mobile phone, ...) ending up with total cost of 6000 €/a + 100 €/a = 6100 €/a. Eve’s own contribution remains the same! The parents again must fill the gap: 3700 €/a (3600 €/a + 100 €/a) or 1300 €/a (1200 €/a + 100 €/a). The additional costs of 100 €/a must be completely borne by the parents, in both cases, no matter how high Eve’s own contribution is.

However, the analysis, which is the basis for the EU decision, figuratively calculates additional costs for the parents of only: 100 €/a * 60% = 60 €/a or 100 €/a * 20% = 20 €/a A total of 100 €/a must be paid additionally by the parents in both cases. A significant and severe balancing error (factor 5) exists!

Table 1: examples of averaging bias as a consequence of average-value based analysis leading to a result of 20 €/a instead of 100 €/a (left column), respectively 2 TWh/a instead of 10 TWh/a (right column)

Please read our key messages of page 4, which summarize consequences coming out of the criticized analysis and inform about important aspects of complementary road maps.

We expressly emphasize that we recommend the intensive further development of BEV technology for numerous applications. At the same time, we urgently need technology freedom for the best possible CO₂ reduction including a much more ambitious increase of non-fossil based reFuels as blending components of fuel.

The crucial question is whether the EU wants to ban thermodynamic energy conversion based on chemical energy storage for individual mobility (IC ban) or whether it wants to save CO₂ as quickly and as much as possible in both the short as well as the long term! Optimal CO₂ reduction is definitely not achieved by a simple IC ban!

Therefore we kindly request you not to vote for a simple IC ban but to develop a balanced regulation which additionally considers all aspects of mobility with relevance to society, economy and above all environment. In other regions of the world reFuels are mandatory for a sustainable energy system.

5 Photovoltaics and Wind etc. is called “green energy”
Eve’s work for a scrap metal company enables additional income. Every 6th day of her work she is allowed to take home as much scrap metal as she can carry and get the proceeds for free. Eve buys the best backpack and carries home as much scrap metal as possible. Eve already earns 4800 €/a and additional proceeds of scrap metal enable (1220 €/a)
\[4800 \text{ €/a} + 1220 \text{ €/a} = 6020 \text{ €/a}\]
Eve can even pay her study! 0% money of parents is required
The cost increase by 100 €/a from 6000 €/a to 6100 €/a. Again, the parents must support Eve.
The parents must support 80 € out of 100 €, although 100% of the cost were covered by Eve before cost increase!
The averaging bias erroneously defines expenses of the parents of 0 €!

| Table 2: Enhanced example, considering the possibility of energy storage, of averaging bias leading to a result of 0 €/a instead of 80 €/a (left column), respectively 0 TWh/a instead of 8 TWh/a (right column) |

Of course, we repeat our willingness to support you in the process of accomplishing the best possible regulation in order to quickly and efficiently reduce CO₂ emissions.

Yours sincerely

Prof. Jesus Benajes
Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Prof. Dimitrios T. Hountalas
National Technical University of Athens, Ierou Polytechniou 8, 15780 Zografou Campus Athens, Greece

Prof. Dr. Lucien Koopmans
Chalmers University of Technology, SE-412 96 Gteborg, Sweden

Prof. ord. Krzysztof Wislocki, D.Sc., D.Eng., Poznan University of Technology, Piłsudskiego 3 street, PL 60-965 Poznan, Poland

Univ.-Prof. Dr. sc. techn. Thomas Koch
Karlsruhe Institute of Technology, Rinkheimer Querallee 2, 76131 Karlsruhe, Germany

This letter is also supported and signed by
Prof. Dr. Thomas Willner,
University of Applied Sciences, Hamburg-Harburg

Contact Partner: Prof. Dr. Thomas Koch, Karlsruhe Institute of Technology • Rinkheimer Querallee 2 • 76131 Karlsruhe
Tel. +49 721 684 242 30 • Mail: thomas.a.koch@kit.edu

Dr. Bianca Maria Vaglieco
CNR Institute of Science and Technology for Sustainable Energy and Mobility, Via G. Marconi, 4-80125 Napoli, Italy

Prof. Jesus Benajes
Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Prof. Dimitrios T. Hountalas
National Technical University of Athens, Ierou Polytechniou 8, 15780 Zografou Campus Athens, Greece

Prof. Dr. Lucien Koopmans
Chalmers University of Technology, SE-412 96 Gteborg, Sweden

Prof. ord. Krzysztof Wislocki, D.Sc., D.Eng., Poznan University of Technology, Piłsudskiego 3 street, PL 60-965 Poznan, Poland

Univ.-Prof. Dr. sc. techn. Thomas Koch
Karlsruhe Institute of Technology, Rinkheimer Querallee 2, 76131 Karlsruhe, Germany

Contact Partner: Prof. Dr. Thomas Koch, Karlsruhe Institute of Technology • Rinkheimer Querallee 2 • 76131 Karlsruhe
Tel. +49 721 684 242 30 • Mail: thomas.a.koch@kit.edu
The following key messages summarize the content of our letter.

A. The EU ambitions to quickly reduce CO₂ emissions are highly appreciated.

B. However, the calculation of CO₂ emissions of an electrical demand according to the highly criticized standard approach is useless and misleading⁶. This criticized standard calculation (i.e. 20 kWh/100 km multiplied by an average CO₂ footprint of 360 g CO₂/kWh⁷ resulting into 72 g CO₂/km) underestimated real CO₂ emissions of an electrical demand by far, as mostly fossil power plants (range between 500 to 1100 g CO₂/kWh) typically need to supply this demand in addition to the normal electricity. The CO₂ impact of electric consumers therefore is clearly higher than calculated (see Table 1, page 2)⁸.

C. Electrical energy storage possibilities improve the situation, but the analysis according to above explained B. remains wrong (see Table 2, page 3).

D. Before evaluating a technology ban, it is very important to determine the environmental impact reliably on the basis of a correct and systemic analysis.

E. A quick CO₂ reduction is only possible in combination with complementary alternatives to electro-mobility like low CO₂ reFuels (bioFuels, eFuels) also with respect to defossilisation of the existing fleet! An intelligent mix of technologies (BEV, refuels) will enable a best overall CO₂ reduction⁹.

F. A well-designed hybrid drivetrain in combination with reFuels-blends (i.e. R33, G40) enables a CO₂ reduction potential significantly below 100 g CO₂/km (~50% of today's benchmark). A hybrid technology strategy will be standard in the future in order to further reduce the CO₂-emissions. Also after the year 2040 we cannot afford to leave out any solution to reduce CO₂ emissions!

G. The large-scale production of reFuels will enable costs below 1 €/l and ensure a fair option especially for people with low income¹⁰.

H. Overall from the scientific point of view a renewable Fuel path (refuels) is sustainable and environmentally friendly.

I. In the case of a "BEV-only strategy", we are heading into a clear state of dependency, especially on materials and processes from China and other regions of the world.

J. Modern ICE¹¹ drivetrains (as of EU6 temp /final) can be assumed to be close to immissions neutral.

K. Many socially important transport solutions depend on ICEs i.e. civil protection, military, fire fighting vehicles, rescue and ambulance vehicles, tractors, harvesters, heavy duty construction and working machines, etc. These will become significantly more expensive if the upstream innovation performance of the automotive industry is lost.

L. Many OEMs (i.e. Audi, BMW, Honda, Geely, Mazda, Porsche, Renault, Skoda, Stellantis, Toyota, Renault, Volkswagen) did not sign the Cop26 Glasgow call for a ban of the ICE! The ICE knowledge would be lost in Europe and be transferred to other continents in case of an ICE-Ban in Europe.

M. Technology-open states such as China intensively follow the path of CO₂ neutral reFuels in conjunction with other technologies.

N. Freedom of technology remains an important pillar of our common good and future and must be ensured by a balanced and wise regulation.

⁶ In essence, the criticism addresses the difference between average costs and marginal costs and every analysis with average costs underestimates the real environmental relevance of marginal costs (costs/taxes are comparable to CO₂ emissions).

⁷ The average CO₂ footprint of an electricity system is assumed to be 360 g CO₂/kWh in this example.

⁸ Every electrical consumer acts as an additional consumer, an old fridge in the basement as well as a new server/BEV/heat pump. Switching off each consumer would typically reduce the need of fossil based electrical energy.

⁹ The additional energy demand of eFuels in comparison to a BEV utilization is by far not as critical as claimed. Indeed 2-3 times more electrical energy is required in the case of eFuels, but on the other hand side favorable worldwide locations enable high efficiency of photovoltaics and wind (2-4 times higher than average European locations) and must be considered as well. Even more important, the energy storage and availability problem will be solved with eFuels.

¹⁰ Hydrogen treated vegetable oil (HVO) is well established and cost are well known. eFuel cost depend on the price of electric energy. Low energy cost in the range of 1 €Cent/kWh enables very low efuel cost below 1€/l.

¹¹ ICE: internal combustion engine, ICEs will basically build a Hybrid drivetrain in the future together with an electric motor.
Especially the decisive statements A-D, of the key messages with a clear emphasize of the importance of statement N, as a consequence of a comprehensive analysis is supported by:

1. Prof. Dr. Tetsuya Aizawa, Department of Mechanical Engineering Informatics, Meiji University Tokyo, Japan
2. Univ. Prof. DEng. Wojciech Ambroszko, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Poland
3. DEng. Monika Andrych-Zalewska, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Poland
4. Prof. Dr. Octavio Armas, Institute of Applied Research to Aeronautic Industry, University of Castilla–La Mancha, Spain
5. Assoc. Prof. Dr. Francisco-José Arnaú, CMT - Motores Térmicos, Technical University of Valencia, Spain
6. Dr.-Ing. Cihan Ates, Institute of Thermal Turbomachinery, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
7. Prof. Dr. Akihiko Azetsu, School of Engineering, Tokai University, Japan
8. DSc. DEng. Maciej Bajerlein, Institute of Combustion Engines and Powertrains, Chair of Alternative Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
9. Prof. Dr.-Ing. Bernard Bäker, Chair of Vehicle Mechatronics, TU Dresden, Germany
10. Prof. Dr.-Ing. Hans-Jörg Bauer, Institute of Thermal Turbomachinery, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
11. Prof. Dr. Rosario Ballesteros Yañez, Fuels and Engines Group (GCM), University of Castilla–La Mancha, Spain
12. Dr. Fotios Barmpas, Laboratory of Heat Transfer and Environmental Engineering, Aristotle University of Thessaloniki, Greece
13. Prof. Dr. Christian Beidl, Institute for Internal Combustion Engines and Powertrain Systems, Technical University of Darmstadt, Germany
14. Prof. Dr. Vicente Bermúdez, CMT - Motores Térmicos, Technical University of Valencia, Spain
15. Dr.-Ing. Sören Bernhardt, Institute of Internal Combustion Engines, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
16. DEng. Piotr Bielaczyz, Univ. Prof. at Politecnico Torino, FSAE, Scientific Secretary at BOSMAL Automotive Research & Development Institute Ltd., Vice President Polish Scientific Society of Combustion Engines (PTNSS), General Chair of the SAE PF&L Conference & Exhibition, Bielsko-Biała, Poland
17. Univ. Prof. DSc. DEng. Krzysztof Bieńczak, Institute of Machines and Vehicles, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
18. Prof. em. Dr. Konstantinos Boulouchos, Institute for Energy and Process Engineering, ETH Zurich, Switzerland
19. Dr. Gabriela Bracho, CMT - Motores Térmicos, Technical University of Valencia, Spain
20. Prof. Dr.-Ing. Wolfgang Braig, Prof. i. R., University of Stuttgart, Germany
21. Dr.-Ing. Samuel Braun, Institute of Internal Combustion Engines, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
22. Prof. Tomas Brestovic, Faculty of Mechanical Engineering, Technical University of Košice, Slovakia
23. Prof. Dr. Alberto Broatch, CMT - Motores Térmicos, Technical University of Valencia, Spain
24. DEng. Krzysztof Brodzik, Automotive Research & Development Institute Ltd., Bielsko-Biała, Poland
25. Prof. DSc. DEng. Marek Brzeżański, Head of Chair of Vehicles, Institute of Vehicles and Combustion Engines, Faculty of Mechanics, Cracow University of Technology, Poland
26. Univ. Prof. DSc. DEng. Piotr Budzyński, Department of Automotive Vehicles, Lublin University of Technology, Poland
27. Assoc. Prof. Dr. Marcos Carreres, CMT - Motores Térmicos, Technical University of Valencia, Spain
28. Prof. DSc. DEng. Zdzisław Chłopek, Chair of Combustion Engines, Institute of Machines and Vehicles, Faculty of Vehicles and Machines, Warsaw University of Technology, Poland
29. Dr. Dimitrios Christoforidis, Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece
30. Prof. Dr.-Ing. Martin Cichon, Institute for Automotive Engineering, Nuremberg Institute of Technology Georg Simon Ohm, Nuremberg, Germany
31. DEng. Wojciech Cieślik, Institute of Combustion Engines and Powertrains, Chair of Alternative Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
32. Univ. Prof. DSc. DEng. Jerzy Cisek, Chair of Vehicles, Institute of Vehicles and Combustion Engines, Faculty of Mechanics, Cracow University of Technology, Poland
33. Prof. Dr. José Guilherme Coelho Baêta, Department of Mechanical Engineering (DEMEC), Federal University of Minas Gerais (UFMG), Brazil
34. Prof. Dr. Pascal Chesse, Research Laboratory in Hydrodynamics, Energetics and Atmospheric Environment (LHEEA), École centrale de Nantes, France
35. Dr. Gyubaek Cho, Department of Engine Research, Korea Institute of Machinery and Materials, South Korea
36. Dr. Jaejun Choi, Energy Network Laboratory, Korea Institute of Energy Research, South Korea
37. Prof. Dr. Héctor Climent, CMT - Motores Térmicos, Technical University of Valencia, Spain
38. Univ. Prof. DSc. DEng. Jacek Czarnigowski, Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology, Poland
39. Prof. em. Dipl. Ing. Dr. techn. Jan Czerwinski, Laboratories for IC-Engines & Exhaust Emissions Control, Berne University of Applied Sciences, Biel-Bienne, Switzerland
40. Prof. Dr. Martin Davy, Department of Engineering Science, University of Oxford, England
41. Prof. Petter Dahlander, Division of Combustion and Propulsion Systems, Chalmers University of Technology Gothenburg, Sweden
42. Prof. Augusto Della Torre, Department of Energy, Politecnico di Milano, Italy
43. Prof. Dr. Olaf Deutschmann, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
44. Prof. Dr. José M. Desantes, CMT - Motores Térmicos, Technical University of Valencia, Spain
45. Dr. Athanasios Dimaratos, Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece
46. Assoc. Prof. Dr. Vicente Dolz, CMT - Motores Térmicos, Technical University of Valencia, Spain
47. Prof. Pilar Dorado, Research group Biofuels and Energy saving systems (BioSAhE), University of Cordoba, Spain
48. Prof. Dr. habil. Andreas Dreizler, Institute of Reactive Flows and Diagnostics, Technical University of Darmstadt, Germany
49. Univ. Prof. DSc. DEng. Paweł Drożdziel, Head of Department of Sustainable Transport and Powertrains, Lublin University of Technology, Poland
50. DEng. Jakub Dzida, Automotive Research & Development Institute Ltd., Bielsko-Biała, Poland
51. Prof. Dr.-Ing. Peter Eilts, Institute of Internal Combustion Engines, Technical University of Braunschweig, Germany
52. Prof. Danilo Engelmann, Institute for Energy and Mobility Research, Bern University of Applied Sciences, Biel, Switzerland
81. Dr. Peter Grabner, Institute of Thermodynamics and Sustainable Propulsion Systems, Graz University of Technology, Graz, Austria
82. DSc. DEng. Łukasz Grabowski, Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology, Poland
83. Dr. Josef Graf, Institute for Powertrains and Automotive Technology, TU Wien, Vienna, Austria
84. Univ.-Prof. Dr.-Ing. Peter Gratzefeld, Institute for Railway Systems, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
85. Dr. Michael Grethler, Head of Research Unit Digital Twin, Institute for Information Management in Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
86. Dr. Rumyana Grozeva, Executive Director of Stara Zagora Regional Economic Development Agency, Bulgaria
87. Prof. Dr. Jan-Dierk Grunwaldt, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
88. Prof. Dr. Peter Gumbsch, Fraunhofer Institute for Mechanics of Materials, Freiburg, Germany
89. Prof. Dr. Michael Günthner, Institute of vehicle propulsion systems, Technical University of Kaiserslautern, Germany
90. Prof. Dr. Thomas Heinze, Institute Automotive Powertrain (IAP), University of Applied Sciences Saarbrücken, Germany
91. Prof. Dr. Juan José Hernández Adrover, Fuels and Engines Group (GCM), University of Castilla–La Mancha, Spain
92. Dr. Jose Martin Herreros, School of Engineering, University of Birmingham, England
93. Prof. Dr. Kai Herrmann, Institute of Thermal and Fluid Engineering, University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland
94. Assoc. Prof. Dr. Naoto Horibe, Graduate School of Energy Science, Kyoto University, Japan
95. Univ. Prof. DSc. DEng. Jacek Hunicz, Department of Sustainable Transport and Powertrains, Lublin University of Technology, Poland
96. Prof. Joonsik Hwang, Department of Mechanical Engineering, Mississippi State University, USA
97. Prof. DSc. DEng. Marek Idzior, Institute of Combustion Engines and Powertrains, Head of the Chair of Combustion Engines, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
98. Univ.-Prof. Dr.-Ing. Jumber Iosebidze, Georgian Technical University, Tbilisi, Georgia
99. Prof. Dr.-Ing. Markus Jakob, Fuel Research, Coburg University of Applied Sciences and Arts, Coburg, Germany
100. Univ. Prof. DSc. DEng. Piotr Jakliński, Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology, Poland
101. Dr. Jinyoung Jang, EMS Laboratory, Korea Institute of Energy Research, South Korea
102. Univ. Prof. DSc. DEng. Anna Janicka, Vice Head of Department of Automotive Engineering, Head of Emission Research Laboratory, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Poland
103. Prof. Dr.-Ing. Johannes Janicka, Institute of Reactive Flows and Diagnostics, Technical University of Darmstadt, Germany
104. DEng. Przemysław Jaszak, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Poland
105. Dr. Changzhao Jiang, Mechanical and Aerospace Engineering, Brunel University London, England
106. Prof. Francisco J. Jiménez-Espadafo, Energy Engineering Department, University of Seville, Spain
107. Prof. Dr.-Ing. Thomas Jordan, Institute of Thermal Energy Technology and Safety, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
108. Dr. Yongjin Jung, EMS Laboratory, Korea Institute of Energy Research, South Korea
109. Prof. Dr. Bengt Johansson, Combustion Engine Research Center (CERC), Chalmers University of Technology Gothenburg, Sweden
110. Dr. Keunyeong Kang, Department of Mobility Power Research, Korea Institute of Machinery and Materials, South Korea
111. Univ. Prof. DSc. DEng. Jarosław Kalużny, Institute of Combustion Engines and Powertrains, Chair of Alternative Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
112. Univ. Prof. Jacek Kasperski DSc, PhD, Eng., Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Poland
113. Dr. Dimitris Katsaounis, Lab of Applied Thermodynamics, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece
114. Univ.-Prof. Dr.-Ing. Revaz Kavtaradze, Rafael Dvali Institute of Machine Mechanics, Tbilisi, Georgia
115. Prof. DSc. DEng. Andrzej Kaźmierczak, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Poland
116. DEng. Aleksandra Kęska, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Poland
117. Prof. Dr.-Ing. Maurice Keßler, Gas Engine Laboratory (GenLab), Karlsruhe University of Applied Sciences, Karlsruhe, Germany
118. Dr. Chang-Gi Kim, Department of Mobility Power Research, Korea Institute of Machinery and Materials, South Korea
119. Dr. Chang-Up Kim, Korea Institute of Machinery and Materials, South Korea
120. Prof. Junemo Kim, Department of Mechanical Engineering, Kyung Hee University, Seoul, South Korea
121. Prof. Kiseong Kim, Division of Mechanical Design Engineering, Chonnam National University, South Korea
122. Prof. Seongsoo Kim, Division of Mechanical Convergence Engineering, Silla University, South Korea
123. Dr.-Ing. Wooyeong Kim, Institute of Internal Combustion Engines, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
124. Dr. Young-Min Kim, Department of Mobility Power Research, Korea Institute of Machinery and Materials, South Korea
125. Prof. DSc. DEng. Jan Kindrach, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Poland
126. DEng. Dariusz Klimkiewicz, Automotive Research & Development Institute Ltd., Bielsko-Biała, Poland
127. Univ. Prof. DSc. DEng., Captain (NR) Tomasz Kniaziewicz, Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, Poland
128. Dr. Dimitrios Kolokotronis, Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece
129. Prof. Dr. Grigorios Koltsakis, Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece
130. Prof. Athanasios G. Konstandopoulos, Aerosol & Particle Technology Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Greece
131. Dr. Anastasios Kontses, Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece
132. DEng. Anna Golda Kopec, Automotive Research & Development Institute Ltd., Bielsko-Biała, Poland
133. Prof. Dr. Jan Gerrit Korvink, Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
134. Univ. Prof. DSc. DEng. Grzegorz Koszalka, Department of Sustainable Transport and Powertrains, Lublin University of Technology, Poland
135. Prof. Dr. Sanghoon Kook, The University of New South Wales, Sydney, Australia
136. Univ. Prof. DSc. DEng. Miłosław Kozak, Institute of Combustion Engines and Powertrains, Chair of Alternative Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland

137. Dr.-Ing. Heiko Kubach, Institute of Internal Combustion Engines, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

138. DEng. Konrad Krakowian, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Poland

139. DEng. Jarosław Krasowski, Automotive Research & Development Institute Ltd., Biełsk-Biała, Poland

140. Univ. Prof. DSc. DEng. Hubert Kuszewski, Chair of Vehicles and Transport Engineering, Faculty of Machine Technology and Aviation, Rzeszów University of Technology, Poland

141. Prof. Dr.-Ing. Gisela Lanza, wbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

142. Prof. Dr. Magín Lapuerta Amigo, Fuels and Engines Group (GCM), University of Castilla–La Mancha, Spain

143. Prof. Dr. Martti Larmi, Energy Conversion, Aalto University, Finland

144. Assoc. Prof. Dr. Felix Leach, Department of Engineering Science, University of Oxford, England

145. Prof. Dongwon Lee, Department of Eco-friendly Electric Vehicle, Ajou Motor College, South Korea

146. Dr. Jang-Hee Lee, Department of Mobility Power Research, Korea Insitute of Machinery and Materials, South Korea

147. Prof. Jinwoo Lee, School of Mechanical Engineering, Ulsan College, Ulsan, South Korea

148. Dr. Sanguk Lee, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, South Korea

149. Dr. Seokhwan Lee, Department of Mobility Power Research, Korea Insitute of Machinery and Materials, South Korea

150. Prof. Gesheng Li, School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, China

151. Prof. Dr. Liguang Li, Institute of Fuel Injection and Combustion, Tongji University, Shanghai, China

152. Univ. Prof. DSc. DEng. Piotr Lijewski, Vice-director of the Institute of Combustion Engines and Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland

153. Prof. Dr. Andrei Lipatnikov, Department of Mechanics and Maritime Sciences, Chalmers University of Technology Gothenburg, Sweden

154. Prof. Dr. Long Liu, College of Power and Energy Engineering, Harbin Engineering University, Harbin, China

155. Prof. Dr. José-Javier López, CMT - Motores Térmicos, Technical University of Valencia, Spain

156. Prof. Dr. Tommaso Lucchini, Department of Energy, Politecnico di Milano, Italy

157. Dr.-Ing. Tommy Luft, Institute of Mobile Systems, Chair of Energy Conversion Systems for Mobile Applications, Otto von Guericke University Magdeburg, Germany

158. Univ. Prof. DSc. DEng. Rafal Longwic, Head of Department of Automotive Vehicles, Lublin University of Technology, Poland

159. Dr. Dario Lopez-Pintor, Combustion Research Facility, Sandia National Laboratories, USA

160. Prof. Dr. Mario Martins, Mechanical Engineering Department, Federal University of Santa Maria, Brazil

161. Prof. Ing. DrSc. Jan Macek, Center of Vehicles for Sustainable Mobility, Czech Technical University in Prague, Czech Republic

162. Prof. Dr. Vicente Macian, CMT - Motores Térmicos, Technical University of Valencia, Spain

163. Dr. Xandra Margot, CMT - Motores Térmicos, Technical University of Valencia, Spain
164. Prof. Dr. Marin Marinov, Faculty of Electronic Engineering, Technical University of Sofia, Bulgaria
165. Assoc. Prof. Dr. Jaime Martín, CMT - Motores Térmicos, Technical University of Valencia, Spain
166. Assoc. Prof. Dr. María Carmen Mata-Montes, Institute of Applied Research to Aeronautic Industry, University of Castilla-La Mancha, Spain
167. Prof. Dr. Fabian Mauss, Institute of Electrical and Thermal Energy Systems, Brandenburg University of Technology
168. Assoc. Prof. Dr.-Ing. Georgios Mavropoulos, School of Pedagogical and Technological Education (ASPETE) Marousi, Greece
169. Prof. em. Ron Matthews, Engines and Automotive Research Labs, The University of Texas, Austin, USA
170. Univ.-Prof. Dr.-Ing. Sven Matthiesen, Chair of Power Tools and Machine Elements, Institute of Product Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
171. DEng. Pawel Mazuro, Chair of Heat Technology, Faculty of Mechanics, Energy and Aviation, Warsaw University of Technology, Poland
172. Prof. Dr. Thanos Megaritis, Centre for Advanced Powertrain and Fuels, Brunel University London, England
173. Prof. DSc. DEng. Jerzy Merkisz, D. Hc. multi, Institute of Combustion Engines and Powertrains, Head of the Chair of Combustion Engines, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
174. Prof. DSc. Agnieszka Merkisz-Guranowska, Head of Institute of Transport, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
175. Dr. Maciej Mikulski, School of Technology and Innovations, University of Vaasa, Finland
176. Prof. Dr.-Ing. Oliver Michler, „Friedrich List“ Faculty of Transport and traffic sciences, TU Dresden, Germany
177. Dr. Paul Miles, Combustion Research Facility, Sandia National Laboratories, USA
178. Prof. Federico Millo, Energy Department (DENERG), Politecnico di Torino, Turin, Italy
179. Prof. Dr. Santiago Molina, CMT - Motores Térmicos, Technical University of Valencia, Spain
180. Dr. Javier Monsalve, CMT - Motores Térmicos, Technical University of Valencia, Spain
181. Prof. Seoksu Moon, Department of Mechanical Engineering, Inha University, Incheon, South Korea
182. Prof. Dr.-Ing. habil. Nicolas Moussiopoulos, Laboratory of Heat Transfer and Environmental Engineering, Aristotle University of Thessaloniki, Greece
183. Dr. Joaquín de la Morena, CMT - Motores Térmicos, Technical University of Valencia, Spain
184. Prof. Dr. Yasuo Moriyoshi, Chiba University, Japan
185. Dr. Charles J. Mueller, FSAE, Engine Combustion Research Department, Sandia National Laboratories, USA
186. Univ.-Prof. Dr.-Ing. Tamaz Natriashvili, Rafael Dvali Institute of Machine Mechanics, Tbilisi, Georgia
187. Assoc. Prof. Dr. Roberto Navarro, CMT - Motores Térmicos, Technical University of Valencia, Spain
188. Prof. Dr. Seppo Niemi, School of Technology and Innovations, Energy Technology, University of Vaasa, Finland
189. Prof. Dr. José Nogueira-Goriba, Institute of Applied Research to Aeronautic Industry, University of Castilla-La Mancha, Spain
190. Assoc. Prof. Dr. Ricardo Novella, CMT - Motores Térmicos, Technical University of Valencia, Spain
191. Prof. Dr. Leonidas Ntziachristos, Laboratory of Heat Transfer and Environmental Engineering, Aristotle University of Thessaloniki, Greece
192. Prof. Dr. Michael Oevermann, Institute of Mathematics, Numerical mathematics and scientific computing, Brandenburg University of Technology Cottbus–Senftenberg, Germany
193. Dr. Seungmook Oh, Department of Mobility Power Research, Korea Institute of Machinery and Materials, South Korea
194. Prof. Dr. Pablo Olmeda, CMT - Motores Térmicos, Technical University of Valencia, Spain
195. Prof. Dr. Christopher Onder, Institute for Dynamic Systems and Control, ETH Zurich, Switzerland
196. Prof. Dr. Angelo Onorati, Department of Energy, Politecnico di Milano, Italy
197. DSc. DEng. Małgorzata Orczyk, Vice-director of Institute of Transport, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
198. Prof. Dr. Dr.-Ing. Jivka Ovtcharova, Head of Institute for Information Management in Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
199. DEng. Piotr Pajdowski, Automotive Research & Development Institute Ltd., Bielsko-Biała, Poland
200. Prof. Dr. habil. Michael Palocz-Andresen, Institute for sustainable and environmental chemistry, Leuphana University of Lüneburg, Germany
201. Prof. Dr. José Pastor, CMT - Motores Térmicos, Technical University of Valencia, Spain
202. Assoc. Prof. Dr. Efthimios G. Pariotis, Hellenic Naval Academy Piraeus, Greece
203. Dr. Cheol-Woong Park, Department of Mobility Power Research, Korea Institute of Machinery and Materials, South Korea
204. Dr. Hyunwook Park, Department of Mobility Power Research, Korea Institute of Machinery and Materials, South Korea
205. Prof. Dr. Raul Payri, CMT - Motores Térmicos, Technical University of Valencia, Spain
206. Dr. George Perkoulidis, Laboratory of Heat Transfer and Environmental Engineering, Aristotle University of Thessaloniki, Greece
207. Prof. DSc. DEng. Ireneusz Pielecha, Institute of Combustion Engines and Powertrains, Head of the Chair of Alternative Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
208. Prof. DSc. DEng. Jacek Pielecha, Dean of the Faculty, Institute of Combustion Engines and Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
209. Prof. Dr. Sara Pinzi, Research group Biofuels and Energy saving systems (BioSAhE), University of Cordoba, Spain
210. Assoc. Prof. Dr. Pedro Piquerias, CMT - Motores Térmicos, Technical University of Valencia, Spain
211. Prof. Dr.-Ing. Steven Peters, Institute of Automotive Engineering, Technical University of Darmstadt, Germany
212. Assoc. Prof. Dr. Benjamin Plá, CMT - Motores Térmicos, Technical University of Valencia, Spain
213. Prof. Dipl. Ing. Manfred Plechaty, Institute for Digital Transformation, University of Applied Sciences Neu-Ulm, Germany
214. Prof. Dr. Nedyu Popivanov, Faculty of Mathematics and Informatics, University of Sofia, Bulgaria
215. DEng. Wojciech Poprawski, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Poland
216. DEng. Tomasz Praszkiwicz, Automotive Research & Development Institute Ltd., Bielsko-Biała, Poland
217. Dr.-Ing. Balazs Pritz, Institute of Thermal Turbomachinery, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
218. Prof. Dr.-Ing. Rom Rabe, Department of Maritime Studies, Plant Techniques and Logistics, University of Applied Sciences Technology, Business and Design Wismar, Germany
Bunte Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

221. Prof. Dr. Beat Ribi, Institute of Thermal and Fluid Engineering, University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland

222. Prof. Dr. Jonas W Ringsberg, Department of Mechanics and Maritime Sciences, Division of Marine Technology, Chalmers University of Technology Gothenburg, Sweden

223. DEng, Janusz Rogula, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Poland

224. Prof. Dr. José Rodríguez Fernández, Fuels and Engines Group (GCM), University of Castilla–La Mancha, Spain

225. DEng, Grzegorz Romanik, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Poland

226. Dr.-Ing. Tilo Roß, Dresden Institute of Automobile Engineering, TU Dresden, Germany

227. Prof. Dr.-Ing. Hermann Rottengruber, Institute of Mobile Systems, Chair of Energy Conversion Systems for Mobile Applications, Otto von Guericke University Magdeburg, Germany

228. Assoc. Prof. Dr. Santiago Ruíz, CMT - Motores Térmicos, Technical University of Valencia, Spain

229. Univ. Prof. DSc. DEng, Łukasz Rymaniak, Institute of Combustion Engines and Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland

230. DEng, Rafał Sala, Automotive Research & Development Institute Ltd., Bielsko-Biała, Poland

231. Prof. Dr. Javier Salvador, CMT - Motores Térmicos, Technical University of Valencia, Spain

232. Prof. Dr. Zissis Samaras, Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece

233. Univ. Prof. DSc. DEng, Wojciech Sawczuk, Institute of Transport Engineering, Chair of Rail Transport, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland

234. Prof. Dr.-Ing. Siegfried Schmalzried, Faculty of Industrial Technologies, Furtwangen University, Furtwangen, Germany

235. Dr.-Ing. Sebastian Schneider, Institute of Mobile Systems, Chair of Energy Conversion Systems for Mobile Applications, Otto von Guericke University Magdeburg, Germany

236. Dr. Eberhard Schutting, Institute of Thermodynamics and Sustainable Propulsion Systems, Graz University of Technology, Graz, Austria

237. Prof. Dr. David Sedarsky, Department of Mechanics and Maritime Sciences, Chalmers University of Technology Gothenburg, Sweden

238. DSc. DEng, Jaroslaw Seleck, Institute of Machines and Vehicles, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland

239. Prof. Jiro Senda, Mechanical Engineering Department, Doshisha University, Kyoto, Japan

240. Prof. Dr. Jose R. Serrano, CMT - Motores Térmicos, Technical University of Valencia, Spain

241. DEng. Ewa Siemionek, Department of Automotive Vehicles, Lublin University of Technology, Poland

242. Dr.h.c. mult. prof. Ing. Juraj Sinay, DrSc., Technical University of Košice, Slovakia

243. Prof. DSc. DEng, Lech Sitnik, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Poland

244. Dr. Magnus Sjöberg, Combustion Research Facility, Sandia National Laboratories, USA

245. DEng. Maria Skrętowicz, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Poland
Univ. Prof. Janusz Skrzypacz, DSc, DEng., Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Poland

Prof. Han Ho Song, Department of Mechanical Engineering, Seoul National University, South Korea

Prof. DSc. DEng. Marcin Śliżak, General Director of the Motor Transport Institute, Warsaw, Poland

Univ. Prof. DSc. DEng. Krzysztof Śliwiński, Chair of Vehicles, Institute of Vehicles and Combustion Engines, Faculty of Mechanics, Cracow University of Technology, Poland

Prof. Dr. Ulrich Spicher (retired), Institute of Internal Combustion Engines, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Univ. Prof. DSc. DEng. Zbigniew J. Sroka, Head of Department of Automotive Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Poland

DSc. DEng. Arkadiusz Stachowiak, Institute of Machines and Vehicles, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland

Prof. Dr. Matthias Stark, Institute of Thermal and Fluid Engineering, University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland

Prof. Dr. Tassos Stamatelos, Laboratory of Thermodynamics and Thermal Engines, University of Thessaly, Greece

DEng. Anna Brzozowska Stanuch, Automotive Research & Development Institute Ltd., Bielsko-Biała, Poland

Prof. DSc. DEng. Zdzisław Stelmasiak, Mechanical and Humanistic Academy, Bielsko-Biała, Poland

Prof. Dr.-Ing. Robert Stiegitz, Head Institute for Neutron Physics and Reactor Technology (INR), Chair Institute for Applied Thermofluidics (IATF), Director Frederic Joliot-Otto Hahn School (CEA-KIT), Karlsruher Institute of Technology (KIT), Karlsruhe, Germany

DEng. Arkadiusz Stojecki, Vice-Director of the Automotive Research & Development Institute Ltd., Bielsko-Biała, Poland

Prof. Dr.-Ing. Matthias Stripf, Institute for Thermo-Fluid-Dynamics, Karlsruhe University of Applied Sciences, Karlsruhe, Germany

Univ. Prof. DSc. DEng. Mieczysław Struś, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Poland

DEng. Andrzej Suchecki, Automotive Research & Development Institute Ltd., Bielsko-Biała, Poland

DEng. Marek Sutkowski, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Poland

DSc. DEng. Antoni Świątek, President of the Board of the Automotive Research & Development Institute Ltd., Bielsko-Biała, Poland

DEng. Piotr Świątek, Managing Director CEO of the Automotive Research & Development Institute Ltd., Bielsko-Biała, Poland

DEng. Andrzej Szczotka, Automotive Research & Development Institute Ltd., Bielsko-Biała, Poland

DEng. Przemysław Szulc, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Poland

Prof. Ing. Michal Takats, CSc, Faculty of Mechanical Engineering, Czech Technical University in Prague, Czech Republic

Prof. Dr.-Ing. Marco Taschek, Technical Thermodynamics & Piston Machines, Faculty of Mechanical Engineering/Environmental Engineering, Ostbayerische Technische Hochschule Amberg-Weiden (OTH) (Technical University of Applied Sciences), Amberg-Weiden, Germany

Prof. DSc. DEng. Andrzej Teodorczyk, Head of the Chair of Heat Technology, Faculty of Mechanics, Energy and Aviation, Warsaw University of Technology, Poland

Prof. Dr. André Thess, Institute of Energy Storage (IES), Institute of Thermodynamics and Thermal Process Engineering (ITT), University of Stuttgart, Germany
271. Prof. Dr. Francisco Tinaut, CMT - Motores Térmicos, Technical University of Valencia, Spain
272. Assoc. Prof. Dr. Andrés Tiseira, CMT - Motores Térmicos, Technical University of Valencia, Spain
273. DEng. Marcin Tkaczyk, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Poland
274. Prof. Dr. Georgi Todorov, Dean of the Faculty of Mechanical Engineering, Technical University of Sofia, Bulgaria
275. Dr.-Ing. Olaf Toedter, Institute of Internal Combustion Engines, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
276. Prof. Dr. Ananias Tomboulides, Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece
277. Prof. em. Dr. Eiji Tomita, Okayama University, Okayama, Japan
278. Prof. Dr. Bernardo Tormos, CMT - Motores Térmicos, Technical University of Valencia, Spain
279. Prof. Dr. Antonio Torregrosa, CMT - Motores Térmicos, Technical University of Valencia, Spain
280. Prof. Dr.-Ing. Helmut Tschöke, Institute of Mobile Systems, Otto von Guericke University Magdeburg, Germany
281. Dr. George Tsegas, Laboratory of Heat Transfer and Environmental Engineering, Aristotle University of Thessaloniki, Greece
282. Dr. Jiri Vavra, Josef Bozek Research Centre for Vehicles of Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Czech Republic
283. Dr. Amin Velji, Institute of Internal Combustion Engines, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
284. Prof. Dr. ir. Sebastian Verhelst, Sustainable Thermo-Fluid Energy Systems, Ghent University, Belgium
285. Dr. Oldrich Vitek, Department of Automotive, Combustion Engine and Railway Engineering, Czech Technical University in Prague, Czech Republic
286. Assoc. Prof. Dr. Christos Vlachokostas, Laboratory of Heat Transfer and Environmental Engineering, Aristotle University of Thessaloniki, Greece
287. Dr.-Ing. Uwe Wagner, Institute of Internal Combustion Engines, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
288. DEng. Wojciech Walkowiak, Retired Head of Department of Automotive Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Poland
289. Prof. Dr.-Ing. Ulrich Walther, Chair for Vehicle Engines, University of Applied Sciences Zwickau, Germany
290. Dr. Meiping Wang, University of Windsor, Canada
291. Dr. Xinyan Wang, Centre for Advanced Powertrain and Fuels, Brunel University London, England
292. Prof. DSc. DEng. Mirosław Wendeker, Head of Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology, Poland
293. Dr.-Ing. Ronny Werner, Dresden Institute of Automobile Engineering, TU Dresden, Germany
294. Prof. Dr.-Ing. Stefan Will, Institute of Engineering Thermodynamics (LIT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
295. Dr. Heiner Wirbser, Institute of Technical thermodynamics (ITT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
296. Prof. Dr.-Ing. Karsten Wittek, Faculty of Mechanics and Electronics, Heilbronn University of Applied Sciences, Germany
297. DSc. DEng. Łukasz Wojciechowski, Institute of Machines and Vehicles, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
298. Dr. Youngmin Woo, EMS Laboratory, Korea Institute of Energy Research, South Korea
299. Univ. Prof. DSc. DEng. Paweł Woś, Chair of Vehicles and Transport Engineering, Faculty of Machine Technology and Aviation, Rzeszów University of Technology, Poland
300. PD Dr. habil. Yuri M. Wright, Empa, Swiss Federal Laboratories for Materials Science and Technology, Automotive Powertrain Technologies, Dübendorf, Switzerland
301. Prof. Dr. Yudai Yamasaki, Dept. of Human Engineered Environmental Studies, Frontier Science, The University of Tokyo, Japan
302. Prof. Mingfa Yao, State Key Laboratory of Engines (SKLE), Tianjin University, China
303. Prof. Jeong-Eui Yoon, Vice President, Kangwon National University, South Korea
304. Prof. Dr. Xiao Yu, University of Windsor, Canada
305. Univ. Prof. DSc. DEng. Captain (N) Marcin Zacharewicz, Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, Poland
306. Univ. Prof. DSc. DEng., Commander (R) Ryszard Zadrąg, Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, Poland
307. Dr. Theodoros Zannis, Associate Professor and Head of Marine Internal Combustion Engines Lab, Hellenic Naval Academy Piraeus, Greece
308. Univ. Prof. DSc. DEng. Maciej Zawiślak, Department of Automotive Engineering, Head of Fluid Mechanics Laboratory, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Poland
309. Prof. Dr. Zunhua Zhang, School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, China
310. Prof. Hua Zhao, Brunel University London, England
311. Prof. Dr. Ming Zheng, University of Windsor, Canada
312. Dr. Mengni Zhou, School of Safety Science and Emergency Management, Wuhan University of Technology, China
313. Univ. Prof. DSc. DEng. Andrzej Ziolkowski, Institute of Combustion Engines and Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
314. In addition, we would like to point out that a parallel initiative of the undersigned Prof. T. Willner with further 183 supporters from Academia (note: a couple of double nominations in comparison with above list exist), mainly from the field of process and chemical engineering as well as natural sciences, also emphasizes the necessity of a correct CO₂ analysis and considers a freedom of technology as crucial.
Attachment

Critiqued Figure ES5 of the mentioned publication (page 9):

Figure ES5: Comparison of Lower Medium Car lifecycle GWP impacts for conventional gasoline/diesel ICEVs and BEVs for different EU countries, Baseline scenario. Breakdown shown for new 2020 vehicles, and the total only for new 2030 vehicles.

Notes: Results shown for the lower medium car in the baseline scenario. Production = production of raw materials, manufacturing of components and vehicle assembly; WTT = fuel/electricity production cycle; TTW = impacts due to emissions from the vehicle during operational use; Maintenance = impacts from replacement parts and consumables; End-of-Life = impacts from collection, recycling, energy recovery and disposal of vehicles and batteries. Additional information on key input assumptions and derived intermediate data include the following: a lifetime activity of 220,000 km over 15 years. 2020 BEV battery at 58 kWh, with 330 km WLTP range (and with 64 kWh and 449 km WLTP electric range for 2030); a average lifetime EU28 fuel/electricity mix (age-dependant mileage weighted). No battery replacement is needed for BEVs.